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MOTIVATION

“There is only one kind of entropy, and don’t let anyone tell you
otherwise”

-Bill Bialek



MOTIVATION

Thermodynamic entropy is information (a Shannon entropy)

S ∝ H[micro|macro]



MOTIVATION

Entropy (information) determines equilibrium state

Entropy production is presumed to determine nonequilibrium
steady state (myriad of proposed extremum principles)
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MOTIVATION
It is thus only natural to think information of some kind will
govern spontaneous pattern formation



INFORMATION IN EQUILIBRIUM

First conceptualized by Edwin Jaynes
Information Theory and Statistical Mechanics (1957)

Understanding that S ∝ H[micro|macro], developed logical basis
for Gibbs Principle, known as the Principle of Maximum Entropy

Equilibrium distribution one that is least biased, subject to
macroscopic constraints
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ENTROPY PRODUCTION

Decompose changes of entropy as

dS = deS + diS

deS is due to exchange of energy and matter

diS ≥ 0 is the internal entropy production

In local equilibrium field theory, entropy density S =
∫

V s dV
satisfies balance equation

∂s
∂t

+∇ · ~Js = σ

where σ(~x , t) ≡ di s
dt is the local entropy production

di S
dt =

∫
V σ(~x , t) dV
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LINEAR PHENOMENOLOGICAL LAWS

σ =
∑
α

FαJα



LINEAR PHENOMENOLOGICAL LAWS

Fluxes are linearly related to forces

Jk =
∑

j

LkjFj

L is the matrix of phenomenological coefficients, and is positive
definite such that

σ =
∑

jk

LjkFjFk ≥ 0

Onsager Reciprocal Relations:

Lij = Lji

Consequence of detailed balance
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LINEAR PHENOMENOLOGICAL LAWS

Some examples :

Fourier′s law : ~Jq = −κ∇T (x)

Fick′s law : ~Jk = −Dk∇nk (x)

Ohm′s law : I =
V
R

with cross-coupling: the thermoelectric effect

~Jq = Lqq∇
1
T

+ Lqe
~E
T

~Ie = Lee
~E
T

+ Leq∇
1
T
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STEADY STATES

dS
dt

=
deS
dt

+
diS
dt

= 0

Tendency towards equilibrium is balanced by external driving

System “discards” entropy produced by irreversible processes



STEADY STATES

An example: heat conduction

σ = ~Jq · ∇
1
T

diS
dt

=

∫ L

0
Jq

(
∂

∂x
1
T

)
dx =

Jq

Tc
−

Jq

Th
> 0



MINIMUM ENTROPY PRODUCTION?

Use Jq = Lqq
∂
∂x

1
T

diS
dt

=

∫ L

0
Lqq

(
∂

∂x
1
T

)2

dx

Lqq = κT 2(x) ≈ κT 2
avg; using approximation in Euler-Lagrange

κ
∂T
∂x

= constant

yielding correct linear steady-state

Without the approximation, Euler-Lagrange gives

T
∂2T
∂x2 =

(
∂T
∂x

)2
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NONEQUILIBRIUM STATISTICAL MECHANICS

MaxEnt can be generalized to nonequilibrium settings using
quantum formalism; Grandy (2008)

Density matrix is updated subject to macroscopic constraints
evolving over time and space

ρt =
1
Zt

exp
[
− βH −

∫
R
λ(~x , t)F (~x , t)d3x dt

]
St = lnZt + β〈H〉t +

∫
R
λ(~x , t)F (~x , t)d3x dt

Ṡt = γF (~x , t)
(

d
dt
〈F (~x , t)〉t − 〈Ḟ (~x , t)〉t

)
⇒ Ṡtot = Ṡt + Ṡint
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NONEQUILIBRIUM STATISTICAL MECHANICS

First heat conduction example:
heat current operator ~q with energy density h(~x). Steady state
density matrix given by

ρst =
1

Zst
exp
[
− βH +

∫
R
~µ(~x) · ~q(~x)d3x

]
where ~µ(~x) = ∇λ(~x)

in linear expansion:

Sst − S0 ≈ −
1
2

∫
R

∫
R
∇λ(~x)K 0

qq(~x − ~x ′)∇′λ(~x ′)d3xd3x ′

evaluation of covariance function K 0
qq = 2kκT 2(~x)δ(~x − ~x ′) and

λ(~x) = 1
T (~x) gives thermodynamic result for entropy production
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NONEQUILIBRIUM STATISTICAL MECHANICS

Second heat conduction example: relaxation to equilibrium

Start from arbitrary nonequilibrium state, evolve subject to
constraint 〈h(~x , t)〉t that is solution to macroscopic equations of
motion (Fourier’s law here)

ρ(t) =
1

Z (t)
exp
[
−
∫

V
β(~x , t)h(~x , t)d3x

]
Sint (t) = lnZ (t) +

∫
V
β(~x , t)〈h(~x , t)〉td3x
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NONEQUILIBRIUM STATISTICAL MECHANICS

In t →∞ limit, these converge to equilibrium values

ρeq =
1
Z

e−βH

Seq = lnZ + β〈H〉0

Sint maximized subject with additional constraints, and thus
over more restricted class of variations

⇒ Sint (t) < Seq ⇒ Ṡint ≥ 0
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DYNAMICAL SYSTEMS PERSPECTIVE

A microscopic perspective on stochastic thermodynamics
- Altaner, Vollmer (2015)



DYNAMICAL SYSTEMS PERSPECTIVE

Srel ≡ DKL[ρfg(t)||ρcg(t)]

Quantifies dynamical information written to unobservable
degrees of freedom

In general, Stot = Ssys + Smed . For certain class of models :

∆Stot = Srel

and we identify Srel as the thermodynamic entropy production
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EP AS CORRELATION BETWEEN SYSTEM AND

RESERVOIR

Esposito, Lindenberg, Van den Broeck (2009)

Consider system in contact with r finite reservoirs

H(t) = Hsys(t) +
∑

r

Hr + V (t)

initially, system uncorrelated with reservoirs

ρ(0) = ρs(0)
∏

r

ρ
eq
r



EP AS CORRELATION BETWEEN SYSTEM AND

RESERVOIR

Esposito, Lindenberg, Van den Broeck (2009)

Consider system in contact with r finite reservoirs

H(t) = Hsys(t) +
∑

r

Hr + V (t)

initially, system uncorrelated with reservoirs

ρ(0) = ρs(0)
∏

r

ρ
eq
r



EP AS CORRELATION BETWEEN SYSTEM AND

RESERVOIR

Entropy of total system invariant

−Trρ(t)ln ρ(t) = −Trρ(0)ln ρ(0)

Use this to find entropy change of system

∆Ssys = Ssys(t)− Ssys(0)

= −Trρ(t)ln[ρs(t)
∏

r

ρeq
r ] + Trρ(t)lnρ(t) +

∑
r

Tr[ρr (t)− ρeq
r ]lnρeq
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EP AS CORRELATION BETWEEN SYSTEM AND

RESERVOIR

has the form
∆S(t) = ∆eS(t) + ∆iS(t)

where
∆eS(t) = −

∑
r

βr
(
〈Hr 〉t − 〈Hr 〉0

)
∆iS(t) = D

[
ρ(t)||ρsys(t)

∏
r

ρ
eq
r
]

Here, entropy production is DKL (correlation) between system
and reservoirs
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UNIFYING THEME

Entropy production is due non-unitary time evolution of the
(macroscopic) system during relaxation, and is quantified by
how much information is written to unobserved degrees of
freedom

This can be measured indirectly through macroscopic effects
(Grandy; Altaner, Vollmer)

or directly through interaction with environment (Esposito,
Lindenberg, Van den Broeck)
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CROOKS RELATION

Entropy production quantifies how irreversible a process is

σ[x(t)] = ln
P[x(t)]

P̃[x̃(t)]

DKL results consistent with this interpretation
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