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MOTIVATION

“There is only one kind of entropy, and don’t let anyone tell you
otherwise”
-Bill Bialek



MOTIVATION

Thermodynamic entropy is information (a Shannon entropy)

S o H[micro|macro]



MOTIVATION

Entropy (information) determines equilibrium state



MOTIVATION

Entropy (information) determines equilibrium state

Entropy production is presumed to determine nonequilibrium
steady state (myriad of proposed extremum principles)



MOTIVATION

It is thus only natural to think information of some kind will
govern spontaneous pattern formation




INFORMATION IN EQUILIBRIUM

First conceptualized by Edwin Jaynes
Information Theory and Statistical Mechanics (1957)
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INFORMATION IN EQUILIBRIUM

First conceptualized by Edwin Jaynes
Information Theory and Statistical Mechanics (1957)

Understanding that S o« H[micro|macro], developed logical basis
for Gibbs Principle, known as the Principle of Maximum Entropy

Equilibrium distribution one that is least biased, subject to
macroscopic constraints



ENTROPY PRODUCTION

Decompose changes of entropy as

dS = de.S+ a;S
deS is due to exchange of energy and matter

d;S > 0 is the internal entropy production



ENTROPY PRODUCTION

Decompose changes of entropy as

dS =deS+d;S
deS is due to exchange of energy and matter
d;S > 0 is the internal entropy production

In local equilibrium field theory, entropy density S = [, s dV
satisfies balance equation
0s

E‘{—v JS—O'

where a(X,t) % is the local entropy production

= Jyo(%,t) aVv



LINEAR PHENOMENOLOGICAL LAWS

Table of thermodynamic forces and flows

Force F, Flow (Current) J,,
Heat conduction V% Energy flow J,
Diffusion 7V% Diffusion current J;
-V E
Electrical conduction Td) =7 Ton current I
A; 1dE;
Chemical ti - Velocity of ti j=—t
emical reactions 7 elocity of reaction v; Va




LINEAR PHENOMENOLOGICAL LAWS

Fluxes are linearly related to forces

Ji = Z LiiFj
j
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L is the matrix of phenomenological coefficients, and is positive
definite such that

o= LxFiFx >0
jk



LINEAR PHENOMENOLOGICAL LAWS

Fluxes are linearly related to forces
=D LiFj
J

L is the matrix of phenomenological coefficients, and is positive
definite such that

o= LxFiFx >0
jk

Onsager Reciprocal Relations:
L,'j = Lj,'

Consequence of detailed balance



LINEAR PHENOMENOLOGICAL LAWS

Some examples :
Fourier’s law : Jq = —xV T(X)
Fick's law : Jy = — DV nk(x)

v
Ohm’s law : [ = —

R



LINEAR PHENOMENOLOGICAL LAWS

Some examples :

Fourier’s law : Jq = —xV T(X)

Fick’s law : Jx = — DV nk(X)

v
Ohm’s law : [ = —

R
with cross-coupling: the thermoelectric effect

5 1 E
Jq — quVT + Lqu

- E 1
le = I—ee? + Lequ



STEADY STATES

dS deS dS
9t~ o " at

Tendency towards equilibrium is balanced by external driving

System “discards” entropy produced by irreversible processes



STEADY STATES

An example: heat conduction

Ty

LA
Uqu-V?

as [t o1 Jg Jg
o =, T )=



MINIMUM ENTROPY PRODUCTION?

Use Jg = Laggz T

as [t o 1
dt_/o qu<8x r) ox



MINIMUM ENTROPY PRODUCTION?

Use Jg = Laggz T

as [t o 1
dt_/oL (a T) ox

Loq = kT?(x) ~ K T2,; using approximation in Euler-Lagrange

avg’

oT
k—— = constant
ox

yielding correct linear steady-state



MINIMUM ENTROPY PRODUCTION?

Use Jg = Laggz T

as [t o 1
dt_/oL (a T) ox

Loq = kT?(x) ~ K T2,; using approximation in Euler-Lagrange

avg’

oT
k—— = constant
ox

yielding correct linear steady-state

Without the approximation, Euler-Lagrange gives

7T 5?2 T (orT
ox2 ~ \ ox



NONEQUILIBRIUM STATISTICAL MECHANICS

MaxEnt can be generalized to nonequilibrium settings using
quantum formalism; Grandy (2008)

Density matrix is updated subject to macroscopic constraints
evolving over time and space



NONEQUILIBRIUM STATISTICAL MECHANICS

MaxEnt can be generalized to nonequilibrium settings using
quantum formalism; Grandy (2008)

Density matrix is updated subject to macroscopic constraints
evolving over time and space

pt = 1exp[— BH —/ X, H)F(X, )d®x dt]
Z R

Stzant—i—B(H)H—/ )\()?, t)F()?, t)dSX at
R

= 1¢(%.0)( GFE. D)~ (F(%.0))

= Stot = St + Sint



NONEQUILIBRIUM STATISTICAL MECHANICS

First heat conduction example:
heat current operator g with energy density h(x). Steady state
density matrix given by

1 o o
pot — Zexp{— st + [ ) q(x)d3x]

st

where [i(X) = VA(X)



NONEQUILIBRIUM STATISTICAL MECHANICS

First heat conduction example:
heat current operator g with energy density h(x). Steady state
density matrix given by

1 o o
ot = o-exp [ ~ o+ [ ) q(x)d3x]

st
where [i(X) = VA(X)

in linear expansion:
1 - S o -
Sst—So~ —5 / / VAX)KGG (X — X )V AX')dPxaPx’
RJR

evaluation of covariance function K, = 2k T?(X)d(X — X') and

AX) = ﬁ gives thermodynamic result for entropy production



NONEQUILIBRIUM STATISTICAL MECHANICS

Second heat conduction example: relaxation to equilibrium

Start from arbitrary nonequilibrium state, evolve subject to
constraint (h(X, t)); that is solution to macroscopic equations of
motion (Fourier’s law here)
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Second heat conduction example: relaxation to equilibrium

Start from arbitrary nonequilibrium state, evolve subject to
constraint (h(X, t)); that is solution to macroscopic equations of
motion (Fourier’s law here)

p(t) = Zzt)exp[— /V B(X, )h(X, )d®x

Sim(t) = nZ(1) + /V B(X, t)((%, 1))



NONEQUILIBRIUM STATISTICAL MECHANICS

In t — oo limit, these converge to equilibrium values

1
Peq = € oA

Seq =InZ + B(H)o



NONEQUILIBRIUM STATISTICAL MECHANICS

In t — oo limit, these converge to equilibrium values
1
— —_eg A
Peq Ze
Sint maximized subject with additional constraints, and thus

over more restricted class of variations

= Sint(t) < Seq = Sint > 0



DYNAMICAL SYSTEMS PERSPECTIVE

A microscopic perspective on stochastic thermodynamics
- Altaner, Vollmer (2015)

Q 7 (©

weQ stochastic model

_— >
subsequent measurement

PTM

G = Mo {{w)]

(a)

Figure 1. (a) The measurement observable M partitions phase space into disjoint cells C., (bottom) indexed by w € £ (top).
(b) An initial phase space ensemble 0(® is obtained from the coarse-grained ensemble 7® by a maximum entropy (MazEnt)
principle applied to each cell C... (c) An iteration of a coarse-grained model or subsequent measurements on a large number
of systems yield an updated coarse-grained ensemble ﬁl). (d) The microscopic dynamics ® propagates 0° to the fine-grained
ensemble gﬁ:. It shows an intricate structure that carries information about © and g(”). (e) On the coarse-grained level, one is

ignorant of the microscopic dynamics. MazEnt yields the updated coarse-grained ensemble Qgé).



DYNAMICAL SYSTEMS PERSPECTIVE
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Quantifies dynamical information written to unobservable
degrees of freedom



DYNAMICAL SYSTEMS PERSPECTIVE

Srel = DKL[pfg(t)Hng(t)]

Quantifies dynamical information written to unobservable
degrees of freedom

In general, Siot = Ssys + Smeq- For certain class of models :
ASiot = Srel

and we identify S, as the thermodynamic entropy production



EP AS CORRELATION BETWEEN SYSTEM AND
RESERVOIR

Esposito, Lindenberg, Van den Broeck (2009)

Consider system in contact with r finite reservoirs

H(t) = Heys(t) + > Hr + V(1)



EP AS CORRELATION BETWEEN SYSTEM AND
RESERVOIR

Esposito, Lindenberg, Van den Broeck (2009)

Consider system in contact with r finite reservoirs
H(t) = Hsys(t +ZH,+ V(1)

initially, system uncorrelated with reservoirs

) = ps(0 HP



EP AS CORRELATION BETWEEN SYSTEM AND
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Entropy of total system invariant

—Trp(t)In p(t) = —Trp(0)In p(0)



EP AS CORRELATION BETWEEN SYSTEM AND
RESERVOIR

Entropy of total system invariant

—Trp(t)In p(t) = —Trp(0)In p(0)
Use this to find entropy change of system

ASsys = Ssys(t) - Ssys(o)

= —Trp(t)n[ps(t) [ [ o771 + Trp(t)np(t) + > Trlpr(t) — o7 |inp;?



EP AS CORRELATION BETWEEN SYSTEM AND
RESERVOIR

has the form
AS(t) = AeS(t) + A;S(1)

where

AeS(1) = =" Br({Hrhe — (Hr)o)

AiS(t) = D[p(t)||psys(t) [ ] o7



EP AS CORRELATION BETWEEN SYSTEM AND
RESERVOIR

has the form
AS(t) = AeS(t) + A;S(1)

where
AeS(1) = =" Br({Hrhe — (Hr)o)
AiS(t) = D[p(t)||psys(t) [ ] o7

Here, entropy production is DKL (correlation) between system
and reservoirs



UNIFYING THEME

Entropy production is due non-unitary time evolution of the
(macroscopic) system during relaxation, and is quantified by
how much information is written to unobserved degrees of
freedom



UNIFYING THEME

Entropy production is due non-unitary time evolution of the
(macroscopic) system during relaxation, and is quantified by
how much information is written to unobserved degrees of
freedom

This can be measured indirectly through macroscopic effects
(Grandy; Altaner, Vollmer)

or directly through interaction with environment (Esposito,
Lindenberg, Van den Broeck)



CROOKS RELATION

Entropy production quantifies how irreversible a process is

| PIX(0)
O =g




CROOKS RELATION

Entropy production quantifies how irreversible a process is

DKL results consistent with this interpretation



